Methods for Computing State Similarity in Markov Decision Processes

Norm Ferns, Pablo Samuel Castro, Doina Precup, Prakash Pamgaden
School of Computer Science
McGill University
Montréal, Canada, H3A 2A7

{nferns, pcastr, dprecup, prakash}@s.ntgill.ca

1

Abstract

A popular approach to solving large probabilis-
tic systems relies on aggregating states based on
a measure of similarity. Many approaches in
the literature are heuristic. A number of recent
methods rely instead on metrics based on the no-
tion of bisimulation, or behavioral equivalence
between states (Givan et al., 2003; Ferns et al.,
2004). An integral component of such metrics is
the Kantorovich metric between probability dis-
tributions. However, while this metric enables
many satisfying theoretical properties, it is costly
to compute in practice. In this paper, we use tech-
nigues from network optimization and statistical
sampling to overcome this problem. We obtain
in this manner a variety of distance functions for
MDP state aggregation that differ in the trade-
off between time and space complexity, as well
as the quality of the aggregation. We provide an
empirical evaluation of these tradeoffs.

Introduction

alent” MDP with drastically reduced state space, thereby
allowing the use of classical solution methods, while at the
same time providing a guarantee that solutions of the re-
duced MDP can be extended to the original model.

It has been well argued that the notion of “essentially equiv
alent” in probabilistic systems is perhaps best captured fo
mally by bisimulation (Milner, 1980; Park, 1981; Larsen
& Skou, 1991). In the context of MDPs, bisimulation can
roughly be described as the largest equivalence relation on
the state space of an MDP that relates two states precisely
when for every action, they achieve the same immediate
reward and have the same probability of transitioning to
classes of equivalent states. This means that bisimileassta
lead to essentially the same long-term behavior. The bisim-
ulation equivalence classes can even be computed itera-
tively in polynomial time (Givan et al., 2003). However, it
has also been well established that using exact equivalence
in probabilistic systems is problematic. A notion of equiv-
alence is two-valued: two states are either equivalent br no
equivalent. A small perturbation of the transition protiiabi
ties can make two equivalent states no longer equivalent. In
short, any kind of equivalence is too unstable, too semsitiv
to perturbations of the numerical values of the transition
probabilities.

A natural remedy is to use (pseudo)metrics. Metrics are

Markov.d.emsmn processes (MDPs) are the moQg of Cho'c‘?latural guantitative analogues of the notion of equivadenc
for decision making under uncertainty (Boutilier et al.

..’ relation. For example, the triangle inequality is a natu-
Yal gquantitative analogue of transitivity. The metrics on
which we focus specify the degree to which objects of
interest behave similarly. In Ferns et al. (2004; 2005),
based on similar work in the context of labeled Markov

multi-stage decision making in probabilistic environrmsent
The objective of the decision making is to maximize a cu-
mulative measure of long-term performance, calledréhe
tgrn. Dyn:?lml_c programming algorithms, e.g., value 'te.ra'processes (Desharnais et al., 1999; van Breugel and Wor-
tion or pollcy iteration (Puterman, 1994), allow computing rell 2001a; 2001b), we sought to extend bisimulation for
the optimal expected return for any state, as well as the wa

f behavi liov) that tes this ret 4 AMDPs guantitatively in terms of such metrics. Our met-
orbehaving (po |_cy) nat generates this return. HOWever, | rics, based on the Kantorovich probability metric, indeed
many practical situations, the state space of an MDP is to

Rot only provide the appropriate generalization of bisim-

large forthe standard glgorithms to be gpplied. One poD.“'%lation but satisfy many nice additional theoretical prop
technique for overcoming this problem is state aggregation, i s well. Unfortunately, this integral componeng, th

states are.grouped together into blocks, or partitiops,aand Kantorovich metric, is also one that makes our metrics ex-
new MDP is defined over these. The hope is that this can b ensive to compute in practice.

done in such a manner as to construct an “essentially equiv-



In this paper, we explore ways of obtaining practical dis-lation ~ on Ssatisfying the following property:
tance metrics through efficient computation and approx-

imation of the Kantorovich metric. We use techniques s~ <= VacA, (r2= rg and

fr_or_n optlr_nlzatlon_and sampling t(_) obtain varlatlo_ns on our ¥C e S/ ~, PA(C) = P2(C))
bisimulation metrics that are easier to compute in practice

while still maintaining theoretical guarantees. ) o ]
Unfortunately, as an exact equivalence, bisimulation suf-

The paper is organized as follows. In Section 2 we providgers from issues of instability; that is, slight numericétd
the notation and theoretical background necessary for uerences in the MDP parametefs2} and{P&,}, can lead
derstanding the problem at hand. In Section 3 we introducgy vastly different bisimulation partitions. To get around

various candidate state Slmllarlty metrics and discuss thﬁ“S, one genera”zes the notion of bisimulation equi\mn
merits and drawbacks of each. We provide experiments ifhrough bisimulation metrics.

Section 4, to compare and contrast these. Finally, Section

5 contains conclusions and directions for future work. 22 Bisimulation Metrics

2 Background In Ferns et al. (2004; 2005) we provide the following met-
ric generalization of bisimulatioh

2.1 Markov Decision Processes Theorem 2.2. Let ce (0,1) and4 be the set of real-valued
functions on S« S that are bounded byl%, where R=

A finite Markov decision process is a quadruple may Ar2—r3|. Define F: v — @ by

(SA {P%},{rg}) whereSis a finite set of states) is a o s

finite set of actionsPg, is a (Markovian) probability of FC(h)(s, ) = max(|rd —rg| +cTk (h) (P2, P%))
transitioning from stateto s’ under actiora, andrg is the ach
numerical reward for choosing actiarin states. Then :

The discounted, infinite horizon planning task in an MDP is

to determine a policyt: S— Athat maximizes the value of 1. F° has a unique fixed pointg,
every statey™(s) = E[3{> oY rt+1/S = S, T, wheresg is the

state at time Or 1 is the reward achieved at tinhe- 1, yis 2. dfi(s,s) =0 <= s~s,and
a discount factor if0, 1), and the expectation is taken by
following the state dynamics induced Iy The function
VT is called the value function of polick. The optimal o

value functionv*, associated with an optimal policy, is the ldfi — (F%)"(ho)ll < 7= C||':C(hO) —hol|.
unique solution of the set of equations:

* _ a a *
Vi(s) = r;g)(rerysgsPsgv (s))

3. foranylhe v,

Here Tk (h)(P,Q) is the Kantorovich probability metric
applied to distribution® andQ. It is defined as migE, [h]
whereA is a joint probability function orsx Swith projec-
and can be used to determine an optimal policy, by choostionsP andQ), i.e.

ing actions greedily. In fact, the optimal value function

can be computed as the limit of a sequence of iterates 8 e h '
(Puterman, 1994, theorem 6.2.12) . DefMge= 0 and T:Jnka_l kih(se:s))
Vni1(S) = Madaea(rd + Y3 ¢csPoVa(S)). Then{Vy} con- _ .
verges uniformly t&/*. s subject to:vk. Z)\kj =P(x)

]
These results can be realized via a dynamic programming Vi. $ A =Q(s)
(DP) algorithm; however, it is often the case that the state % ) )
space of the given MDP is too large for DP to be feasible. Wk, j. Aj > 0

When this happens, a standard strategy is to approximate

the given MDP by aggregating its state space. The hop&his formulation shows that this metric is an instance of
is that one can obtain a smaller “equivalent” MDP with the minimum cost flow (MCF) network optimization lin-
an easily computable value function that could provide in-ear program (LP). Since there exist strongly polynomial al-
formation about the value function of the original MDP. gorithms to compute the MCF prob|em (Or”n’ ]_988), the
Givan et al. (2003) investigated several notions of MDP—

state equivalence and determined that the most appropriate “Results appear here in slightly modified form.

is bisimulation. 2Frustratingly also  known as  Monge-Kantorovich,
Kantorovich-Rubinstein, Hutchinson, Mallows, Wasserstein,

Definition 2.1. Bisimulation is the largest equivalence re- Vasserstein, Earth Mover’s Distance, and more!



Kantorovich metric can be computed in polynomial time. ing one MCF LP with cost functiods,,. This idea has been
For our purposes, this amounts to a worst case runningather extensively and successfully explored in (Frarngion
time of O(|S3log|S) for each Kantorovich LP (contrast & Manca., 2006). Note that any savings in time comes at
this with the general LP for directly computing the opti- the cost of space requirements, as we are now required to
mal value function: this hakg variables andA||S con-  save solutions for each Kantorovich LP between iterations.
straints (Puterman, 1994)).

The key property of the Kantorovich metric is that it 3-3 Fixed Pointwith Sampling
matches distributions, i.e. assigns them distance zego onl
when they agree on the equivalence classes induced by th
underlying cost function. Therefore, itis not surprisihgtt

it can be used to capture the notion of bisimulation, which
requires that probabilistic transitions agree on bisitioia
equivalence classes.

A more promising approach is a quick and efficient approx-
Ration arising from statistical sampling. Supp&sandQ
are approximated using the empirical distributidhsand
Qi. Thatis, we samplepointsXy, Xz, .. ., X independently
according td® and definé® by P, (x) = 1 5} _; 8% (X). Sim-
ilarly, write Qi(x) = 1 _; 8y, (x). Then
The Kantorovich metric also admits a characterization in
terms of the coupling of random variables. We may write .

Tk (h)(P,Q) = miniy vy E[h(X,Y)] where the expectation is Tk()(R, Q) =min+ kzlh(xk’Y"(k)) (@)
taken with respect to the joint distribution ¢X,Y) and
the minimum is taken with respect to all pairs of randomwhere the minimum is taken over all permutatiomson
variables(X,Y) such that the marginal distribution ¥fis i elements (see p. 12 of Villani (2002); this is a con-
P and the marginal distribution of is Q. sequence of Birkhoff’'s theorem). Now the Strong Law
of Large Numbers (SLLN) tells us that bofl (x)} and
{Qi(x)} converge almost surely tB(x) and Q(x)*. Let
us write T} (h)(P,Q) for Tk (h)(P, Qi) when the empir-
ical distributions are fixed. Then as a consequence of
the SLLN, {T(h)(P,Q)} converges tdk (h)(P, Q) almost

The metric defined by theorem 2.2 can be re-written as: Surely; moreover replacin@i by Ty in F© yields a metric,

dfix(s,8) = max([rg —rg|+ T (dfi) (FS, Fg))- di(s;) = max(|rg —rd|+cTe(df) (P2, PE)).

3 State Similarity Metrics

3.1 Fixed Point

Each such metric is continuous in the MDP parametersvhich converges tdS,, asi gets large (see appendix A for
{r¢} and {P%} and admits tight bounds on the optimal an outline of the proof).

value function, since the optimal value function with dis-
count factory is Lipschitz-continuous with respect to each
metric satisfyingc > y. Thus, when using this metric to ag-
gregate states, it is easy to address issues of instability a
being able to recover optimal solutions. Moreover, the the-
orem provides a way of calculatirdf, : starting with the
metric that is zero everywhere, iteratively apply until a
prescribed degree of accuracy is achieved. Unfortunatel
directly computing the Kantorovich metric at each itera- |
tion is too costly in practice, severely limiting the use of

The importance of this result stems from the fact that the
expression in equation (1) is an instance of the assignment
problem from network optimization. This is a special form
of the MCF problem in which the underlying network is bi-
partite and all flow assignments are either 0 @r Its spe-
cialized structure allows for simpler, faster solution met
)pds For example, the Hungarian algorithm (for a descrip-

on see Munkres (1957)) runs in worst case tid@®),
wherei is the number of samples.

the fixed point metrics. For the continuous spad® with the usual Euclidean met-
ric this approximation of the Kantorovich distance is com-
3.2 Fixed Point with Cost Reoptimization monly known as the empirical Mallows distance. It is used

to test equivalence of empirical distributions in statisti
One way of overcoming the costly computation of the Kan-
torovich LP for every iteration is to use cost reoptimiza- 3 4 Total Variation
tion. The idea is that ify is close toh; in (uniform
norm) distance then optimal solutionsTe(ho)(P,Q) and  The standard metric for measuring the distance between
Tk (h1)(P.Q) should be close too; so instead of starting probability functions is the total variation metric, define
a network optimization algorithm fofk (h1)(P,Q) from by TV(P,Q) = %Zses\P(S) —Q(s)|, which is half theL!-
scratch we save the optimal solutione(ho)(PQ) and ——8MWW _
use it as the starting solutidnin a sense, we are comput- 9uarantees that it applies here. _

Note that bott? andQ; are random variables.

3In LP jargon this concept is known as sensitivity analysis.  °In graph theoretic terminology, this is the problem of optimal

Convergence of the iteratg¢&®)"(hp) to df;, in uniform norm  matching in a weighted graph.



norm ofP— Q. Itis a strong measure of convergence, in theThe first two methods find the fixed point metric by com-
sense that distributions will have distance zero only wherputing the distance between two distributions through the
they agree exactly on transitionsdwery stateln contrast, Kantorovich metric. This latter computation was done us-
the Kantorovich metric demands agreement onlglasses  ing the MCFZIB Minimum Cost Flow solver (Frangioni &

of states. Nevertheless, the total variation is a simple conManca., 2006) for each pair of states and each action. The
cept and one that is easy to compute. first of these methods will be referred to idantorovich

In Ferns et al. (2004), we suggested that in place of itera-COSt reoptimization was used in the second of these exact

tively applyingFS to an initial metrichy until convergence metrics in order to speed up the computation, at the expense

to dS. . we start with an appropriately choskpand appl of larger space requirements. This second method will thus
fix: Pprop Y PPY "~ he referred to agantorovich (reoptimization) The third

c )
o e 1 51 et methuses sttt sapling 0 spoxite e s
% tion distributions of each state. For all MDPs, 10 transitio
then the resultant metric is samples were taken for each state and action, and this vec-
tor of samples was used to estimate the empirical distribu-
tion throughout the whole run. The Hungarian algorithm
was used to solve the assignment problem, as described in
This is in some sense the simplest metric one can comput&ection 3.3. The distance metric was obtained by averag-
yet the one also providing the least guarantees (at the oth@ig the distances obtained over 30 independent runs of this
extreme liesd, ). On the other hand, if we tak® to be  procedure. This method will be referred toSsmple
equal to the discrete metric assigning distaf\ég to all
pairs of states that are not bisimilar, then the resulting me
ric is

c _ a_.a CR a pa
dfy(s8) = max(|rd — 18] + 7 TV(PE.P2)).

The fourth method used the total variation metric; this pro-
vides a loose upper bound on the other metrics, but is much
faster to compute. It will be referred to d¥. The fifth
method uses the total variation metric with bisimilar equiv
alence classes, which provides a tighter upper bound. It
will be referred to aBisim These metrics were com-

vlvhose probability metric componenTV.(P.Q) =  puted using three different values for the discount factor:
5 Yces/~|P(C) — Q(C)| is the total variation distance y={0.1,0.5,0.9}.

defined with respect to the minimized bisimilar MDP. ] o )
It is relatively simply to compute, requiring only the Table 1 summarizes the running times in seconds for each

computation of the exact bisimulation partition. However, Méthod with the different discount factors. A*-"means that

as this latter component is unstable, so is the resultari€ algorithm failed to compute the metric.
metric. More precisely, this metric is not continuous in the

c _ a_.a LR a pa
dw(s,s’)_rgea/\\)(\rs rs""’_l_CTVN(Pis’))a

MDP parameters Kantorovich Kantorovich TV Bisim Sample
' (reoptimization)
.. . . 3x3 gridWorld
Note that by monotonicity of the functiondk, we imme- V=0T 067 563 0078 T 0745 5883
diately havedf, < dS <dg,. y=05 5.223 2.944 0.053 | 0.893 | 14.406
y=09 41.089 15.231 0.303 | 2533 | 85.725

5x5 gridWorld
H y=0.1 - - 0.341 | 103.906 | 44.200
4 EXperlmentS y=05 - - 0.830 | 111.574 | 109.473

y=09 - 5715 | 190.018 | 653.645

. . . . 7x7 gridWorld
Experiments were run on four different MDPs: a3 grid =7 - - > T8 290759 | 168.853
world with two actions (move forward and rotate) and a sin-| y=05 - - 5.768 | 3005.70 | 419.735
y=09 - 42.023 | 4104.17 | 2625.16

gle reward in the center of the room; &5 and a % 7 grid
world each with the same dynamics; and a flattened out ve[-y=o01 57.640 0254 | 14.637 | 72.823
sion of the coffee robot MDP (Boutilier et al., 1995) where zig:g T - 902t | ala%e | 1oo08r
the robot has to get coffee for the user and avoid gettin

wet. Note that we chose on purpose small environments, Table 1: Running times in seconds for different metrics
which would allow a thorough study of all the properties of

the metrics. For all gridworlds, the state includes both the

position as well as the orientation of the agent. So the threghe amount of space used by each method was also com-
gridworlds have 36, 100 and 196 states respectively. Thgared. This was measured using thassiftool of valgrind
actions are deterministic. The coffee domain has 64 state tool library in Linux). Table 2 presents the maximum
and 4 actions, some with stochastic effects. Five methodgumber of bytes used by each algorithm when computing
were used to compute distances for these MIg; df;, the distances for the MDPs.

with cost reoptimizationd® via samplingd$,,, anddS .

Coffee Robot

The distance metric computed is then used to reduce the
6This scaling factor is added to ensure thgbelongs to . state space of the original MDP by means of two aggrega-



Kantorovich | Reoptimize TV Bisim | Sample 5 Conclusions and future work
3x3 gridWorld 80Mb 180Mb 80Kb 70Kb 80Kb
5x5 gridWorld 1.8Gb 1.8Gb 400Kb | 450Kb 500Kb
7x7 gridWorld 1.8Gb 1.8Gb 1.2Mb 1.6Mb 1.8Mb H i i . 5
coffas robot Lech Tecn | 300kt | 325kb | 300Kb In this paper, we discussed four state similarity metrics

based on the notion of bisimulation. We compared and con-
Table 2: Memory usage in bytes for the different metrics trasted these both in theory and in practice. Based on these
results, the metric obtained by means of sampling distribu-
tions, appears to be the clear winner: it significantly out-

) ) . performs the other approaches when considering the trade-
tion methods. In the first approach, the number of desiredi¢ patween the computational requirements of time and

partitions is specified beforehand and a greedy, incremensy,ce on one hand, and the quality of the results obtained

tal aggregation procedure is used until the desired reduGyhen ysing this method for state aggregation, on the other
tion has been reached. More precisely, each state starts 5,4, The next step is to test this metric on large-scale

its own partition. Then, the algorithm greedily picks the gnyironments. Different versions of this metric, based on

two closest partitions and merges them. The distance begess from incremental reinforcement learning algorithms
tween partitions is the minimum distance between pairs Ofather than batch processing, will also be explored. Using
states belonging to each partition. The value function isy,.p, techniques, the computation could be made signifi-

then computed for each state in the original MDP and eacli,yy faster. Versions of these metrics for factored state
partition in the reduced MDP using value iteration. In Fig- spaces are also of great interest.

ures 1, 2, 3, and 4 we present the quality of the results

obtained, measured as thg norm of the value function The sampling approach is also promising for computing

error. More precisely, for each state, we compute the difmetrics in continuous state spaces. In prior works, we es-
ference between its value in the original MDP, and its valuetablished the existence of of bisimulation metrics for con-

as estimated in the aggregate MDP, and take the maximuiiuous MDPs (Ferns et al., 2005). We are hopeful that the

absolute difference over all states, rgaxV*(s) —V*([g])|, idea of approximating measures through empirical distri-
wherelg] is the cluster containing butions will enable us to estimate the Kantorovich metric

. ) in a manner similar to the discrete case.
The second aggregation method greedily adds a state to a

partition if its minimum distance to any state in the parti-
tion is less thare. Both the process of creating partitions
(by picking pairs of states to group) and adding states tC’rhis work has been supported in part by funding from
partitions is greedy. The algorithm will stop when no more \seERC and CEI

merging can be performed. Note that higher values of '

will lead to fewer partitions. The results are presented in

Figures 5, 6, 7,and 8. References
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Appendix A: Proofs

< emax|Ty ((d? — df,) + dfy) (P2, )
Lemma 5.1. For any P and Q{T; (h)(P,Q)} converges to T () (P, P2
Tk (h)(P, Q) almost surely for any k& 4. ¢ e e v a ea
< o([ldi" — dfix| -+ max| Tk (dfix) (P, ) —
Proof. Let € > 0. By the SLLN for eaclx €S {R(X)} T (d,) (P2, P2)])
converges td(x) almost surely. In fact, since there are 1
finitely manyx we have{R(x)} converges td’(x) almost < c(||d® —dS, || + ( —c)s)
surely for allx, and similarly forQ. So for eactx we may _ _
chooséy so large that Thus, we obtain)|df —df,, || < €, as required. O
[P (X) — P(X)],|Qi(X) — Q(X)| < (1-c) for all i > iy. Appendix B: Experiment Graphs
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Figure 2:L. norm of 5x5 gridWorld withy = 0.1 (left), y= 0.5 (middle) andy = 0.9 (right)
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Figure 3:L., norm of 7x7 gridWorld withy = 0.1 (left), y= 0.5 (middle) andy = 0.9 (right)
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Figure 5:¢ vs. Lo, norm (black) and size of aggregate MDP (red) of 3x3 gridWorkdth y = 0.1 (left), y= 0.5 (middle)
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Figure 6:€ vs. Lo norm (black) and size of aggregate MDP (red) of 5x5 gridWorkdth y = 0.1 (left), y = 0.5 (middle)

andy = 0.9 (right)
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Figure 7:g vs. L, norm (black) and size of aggregate MDP (red) of 7x7 gridWosdth y = 0.1 (left), y= 0.5 (middle)

andy = 0.9 (right)
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